\(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}}{(d+e x)^5} \, dx\) [1940]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F(-2)]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 37, antiderivative size = 226 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^5} \, dx=\frac {5 c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{e^3}-\frac {10 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 e^2 (d+e x)^2}-\frac {2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{3 e (d+e x)^4}-\frac {5 c^{3/2} d^{3/2} \left (c d^2-a e^2\right ) \text {arctanh}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{2 e^{7/2}} \]

[Out]

-10/3*c*d*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/e^2/(e*x+d)^2-2/3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/e/
(e*x+d)^4-5/2*c^(3/2)*d^(3/2)*(-a*e^2+c*d^2)*arctanh(1/2*(2*c*d*e*x+a*e^2+c*d^2)/c^(1/2)/d^(1/2)/e^(1/2)/(a*d*
e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/e^(7/2)+5*c^2*d^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/e^3

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 226, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.108, Rules used = {676, 678, 635, 212} \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^5} \, dx=-\frac {5 c^{3/2} d^{3/2} \left (c d^2-a e^2\right ) \text {arctanh}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{2 e^{7/2}}+\frac {5 c^2 d^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e^3}-\frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{3 e (d+e x)^4}-\frac {10 c d \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 e^2 (d+e x)^2} \]

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/(d + e*x)^5,x]

[Out]

(5*c^2*d^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/e^3 - (10*c*d*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^
(3/2))/(3*e^2*(d + e*x)^2) - (2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2))/(3*e*(d + e*x)^4) - (5*c^(3/2)*
d^(3/2)*(c*d^2 - a*e^2)*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a
*e^2)*x + c*d*e*x^2])])/(2*e^(7/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 676

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((
a + b*x + c*x^2)^p/(e*(m + p + 1))), x] - Dist[c*(p/(e^2*(m + p + 1))), Int[(d + e*x)^(m + 2)*(a + b*x + c*x^2
)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && GtQ[
p, 0] && (LtQ[m, -2] || EqQ[m + 2*p + 1, 0]) && NeQ[m + p + 1, 0] && IntegerQ[2*p]

Rule 678

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((
a + b*x + c*x^2)^p/(e*(m + 2*p + 1))), x] - Dist[p*((2*c*d - b*e)/(e^2*(m + 2*p + 1))), Int[(d + e*x)^(m + 1)*
(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a
*e^2, 0] && GtQ[p, 0] && (LeQ[-2, m, 0] || EqQ[m + p + 1, 0]) && NeQ[m + 2*p + 1, 0] && IntegerQ[2*p]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{3 e (d+e x)^4}+\frac {(5 c d) \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^3} \, dx}{3 e} \\ & = -\frac {10 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 e^2 (d+e x)^2}-\frac {2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{3 e (d+e x)^4}+\frac {\left (5 c^2 d^2\right ) \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx}{e^2} \\ & = \frac {5 c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{e^3}-\frac {10 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 e^2 (d+e x)^2}-\frac {2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{3 e (d+e x)^4}-\frac {\left (5 c^2 d^2 \left (c d^2-a e^2\right )\right ) \int \frac {1}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{2 e^3} \\ & = \frac {5 c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{e^3}-\frac {10 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 e^2 (d+e x)^2}-\frac {2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{3 e (d+e x)^4}-\frac {\left (5 c^2 d^2 \left (c d^2-a e^2\right )\right ) \text {Subst}\left (\int \frac {1}{4 c d e-x^2} \, dx,x,\frac {c d^2+a e^2+2 c d e x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{e^3} \\ & = \frac {5 c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{e^3}-\frac {10 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 e^2 (d+e x)^2}-\frac {2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{3 e (d+e x)^4}-\frac {5 c^{3/2} d^{3/2} \left (c d^2-a e^2\right ) \tanh ^{-1}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{2 e^{7/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.38 (sec) , antiderivative size = 185, normalized size of antiderivative = 0.82 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^5} \, dx=\frac {((a e+c d x) (d+e x))^{5/2} \left (\frac {\sqrt {e} \left (-2 a^2 e^4-2 a c d e^2 (5 d+7 e x)+c^2 d^2 \left (15 d^2+20 d e x+3 e^2 x^2\right )\right )}{(a e+c d x)^2 (d+e x)^4}-\frac {15 c^{3/2} d^{3/2} \left (c d^2-a e^2\right ) \text {arctanh}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {d+e x}}{\sqrt {e} \sqrt {a e+c d x}}\right )}{(a e+c d x)^{5/2} (d+e x)^{5/2}}\right )}{3 e^{7/2}} \]

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/(d + e*x)^5,x]

[Out]

(((a*e + c*d*x)*(d + e*x))^(5/2)*((Sqrt[e]*(-2*a^2*e^4 - 2*a*c*d*e^2*(5*d + 7*e*x) + c^2*d^2*(15*d^2 + 20*d*e*
x + 3*e^2*x^2)))/((a*e + c*d*x)^2*(d + e*x)^4) - (15*c^(3/2)*d^(3/2)*(c*d^2 - a*e^2)*ArcTanh[(Sqrt[c]*Sqrt[d]*
Sqrt[d + e*x])/(Sqrt[e]*Sqrt[a*e + c*d*x])])/((a*e + c*d*x)^(5/2)*(d + e*x)^(5/2))))/(3*e^(7/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(650\) vs. \(2(198)=396\).

Time = 3.39 (sec) , antiderivative size = 651, normalized size of antiderivative = 2.88

method result size
default \(\frac {-\frac {2 \left (c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )\right )^{\frac {7}{2}}}{3 \left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )^{5}}+\frac {4 c d e \left (-\frac {2 \left (c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )\right )^{\frac {7}{2}}}{\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )^{4}}+\frac {6 c d e \left (\frac {2 \left (c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )\right )^{\frac {7}{2}}}{\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )^{3}}-\frac {8 c d e \left (\frac {2 \left (c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )\right )^{\frac {7}{2}}}{3 \left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )^{2}}-\frac {10 c d e \left (\frac {\left (c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )\right )^{\frac {5}{2}}}{5}+\frac {\left (e^{2} a -c \,d^{2}\right ) \left (\frac {\left (2 c d e \left (x +\frac {d}{e}\right )+e^{2} a -c \,d^{2}\right ) \left (c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )\right )^{\frac {3}{2}}}{8 c d e}-\frac {3 \left (e^{2} a -c \,d^{2}\right )^{2} \left (\frac {\left (2 c d e \left (x +\frac {d}{e}\right )+e^{2} a -c \,d^{2}\right ) \sqrt {c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}}{4 c d e}-\frac {\left (e^{2} a -c \,d^{2}\right )^{2} \ln \left (\frac {\frac {e^{2} a}{2}-\frac {c \,d^{2}}{2}+c d e \left (x +\frac {d}{e}\right )}{\sqrt {c d e}}+\sqrt {c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}\right )}{8 c d e \sqrt {c d e}}\right )}{16 c d e}\right )}{2}\right )}{3 \left (e^{2} a -c \,d^{2}\right )}\right )}{e^{2} a -c \,d^{2}}\right )}{e^{2} a -c \,d^{2}}\right )}{3 \left (e^{2} a -c \,d^{2}\right )}}{e^{5}}\) \(651\)

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^5,x,method=_RETURNVERBOSE)

[Out]

1/e^5*(-2/3/(a*e^2-c*d^2)/(x+d/e)^5*(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(7/2)+4/3*c*d*e/(a*e^2-c*d^2)*(-2/
(a*e^2-c*d^2)/(x+d/e)^4*(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(7/2)+6*c*d*e/(a*e^2-c*d^2)*(2/(a*e^2-c*d^2)/(
x+d/e)^3*(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(7/2)-8*c*d*e/(a*e^2-c*d^2)*(2/3/(a*e^2-c*d^2)/(x+d/e)^2*(c*d
*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(7/2)-10/3*c*d*e/(a*e^2-c*d^2)*(1/5*(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e)
)^(5/2)+1/2*(a*e^2-c*d^2)*(1/8*(2*c*d*e*(x+d/e)+e^2*a-c*d^2)/c/d/e*(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(3/
2)-3/16*(a*e^2-c*d^2)^2/c/d/e*(1/4*(2*c*d*e*(x+d/e)+e^2*a-c*d^2)/c/d/e*(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))
^(1/2)-1/8*(a*e^2-c*d^2)^2/c/d/e*ln((1/2*e^2*a-1/2*c*d^2+c*d*e*(x+d/e))/(c*d*e)^(1/2)+(c*d*e*(x+d/e)^2+(a*e^2-
c*d^2)*(x+d/e))^(1/2))/(c*d*e)^(1/2))))))))

Fricas [A] (verification not implemented)

none

Time = 0.54 (sec) , antiderivative size = 594, normalized size of antiderivative = 2.63 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^5} \, dx=\left [\frac {15 \, {\left (c^{2} d^{5} - a c d^{3} e^{2} + {\left (c^{2} d^{3} e^{2} - a c d e^{4}\right )} x^{2} + 2 \, {\left (c^{2} d^{4} e - a c d^{2} e^{3}\right )} x\right )} \sqrt {\frac {c d}{e}} \log \left (8 \, c^{2} d^{2} e^{2} x^{2} + c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4} - 4 \, {\left (2 \, c d e^{2} x + c d^{2} e + a e^{3}\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {\frac {c d}{e}} + 8 \, {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right ) + 4 \, {\left (3 \, c^{2} d^{2} e^{2} x^{2} + 15 \, c^{2} d^{4} - 10 \, a c d^{2} e^{2} - 2 \, a^{2} e^{4} + 2 \, {\left (10 \, c^{2} d^{3} e - 7 \, a c d e^{3}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{12 \, {\left (e^{5} x^{2} + 2 \, d e^{4} x + d^{2} e^{3}\right )}}, \frac {15 \, {\left (c^{2} d^{5} - a c d^{3} e^{2} + {\left (c^{2} d^{3} e^{2} - a c d e^{4}\right )} x^{2} + 2 \, {\left (c^{2} d^{4} e - a c d^{2} e^{3}\right )} x\right )} \sqrt {-\frac {c d}{e}} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {-\frac {c d}{e}}}{2 \, {\left (c^{2} d^{2} e x^{2} + a c d^{2} e + {\left (c^{2} d^{3} + a c d e^{2}\right )} x\right )}}\right ) + 2 \, {\left (3 \, c^{2} d^{2} e^{2} x^{2} + 15 \, c^{2} d^{4} - 10 \, a c d^{2} e^{2} - 2 \, a^{2} e^{4} + 2 \, {\left (10 \, c^{2} d^{3} e - 7 \, a c d e^{3}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{6 \, {\left (e^{5} x^{2} + 2 \, d e^{4} x + d^{2} e^{3}\right )}}\right ] \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^5,x, algorithm="fricas")

[Out]

[1/12*(15*(c^2*d^5 - a*c*d^3*e^2 + (c^2*d^3*e^2 - a*c*d*e^4)*x^2 + 2*(c^2*d^4*e - a*c*d^2*e^3)*x)*sqrt(c*d/e)*
log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 - 4*(2*c*d*e^2*x + c*d^2*e + a*e^3)*sqrt(c*d*e*x^2 +
 a*d*e + (c*d^2 + a*e^2)*x)*sqrt(c*d/e) + 8*(c^2*d^3*e + a*c*d*e^3)*x) + 4*(3*c^2*d^2*e^2*x^2 + 15*c^2*d^4 - 1
0*a*c*d^2*e^2 - 2*a^2*e^4 + 2*(10*c^2*d^3*e - 7*a*c*d*e^3)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(e^
5*x^2 + 2*d*e^4*x + d^2*e^3), 1/6*(15*(c^2*d^5 - a*c*d^3*e^2 + (c^2*d^3*e^2 - a*c*d*e^4)*x^2 + 2*(c^2*d^4*e -
a*c*d^2*e^3)*x)*sqrt(-c*d/e)*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2
)*sqrt(-c*d/e)/(c^2*d^2*e*x^2 + a*c*d^2*e + (c^2*d^3 + a*c*d*e^2)*x)) + 2*(3*c^2*d^2*e^2*x^2 + 15*c^2*d^4 - 10
*a*c*d^2*e^2 - 2*a^2*e^4 + 2*(10*c^2*d^3*e - 7*a*c*d*e^3)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(e^5
*x^2 + 2*d*e^4*x + d^2*e^3)]

Sympy [F(-1)]

Timed out. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^5} \, dx=\text {Timed out} \]

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2)/(e*x+d)**5,x)

[Out]

Timed out

Maxima [F(-2)]

Exception generated. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^5} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^5,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e*(a*e^2-c*d^2)>0)', see `assu
me?` for mor

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 462 vs. \(2 (198) = 396\).

Time = 0.52 (sec) , antiderivative size = 462, normalized size of antiderivative = 2.04 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^5} \, dx=\frac {1}{3} \, {\left (\frac {15 \, {\left (c^{3} d^{4} \mathrm {sgn}\left (\frac {1}{e x + d}\right ) \mathrm {sgn}\left (e\right ) - a c^{2} d^{2} e^{2} \mathrm {sgn}\left (\frac {1}{e x + d}\right ) \mathrm {sgn}\left (e\right )\right )} \arctan \left (\frac {\sqrt {c d e - \frac {c d^{2} e}{e x + d} + \frac {a e^{3}}{e x + d}}}{\sqrt {-c d e}}\right )}{\sqrt {-c d e} e^{3} {\left | e \right |}} + \frac {3 \, {\left (\sqrt {c d e - \frac {c d^{2} e}{e x + d} + \frac {a e^{3}}{e x + d}} c^{3} d^{4} \mathrm {sgn}\left (\frac {1}{e x + d}\right ) \mathrm {sgn}\left (e\right ) - \sqrt {c d e - \frac {c d^{2} e}{e x + d} + \frac {a e^{3}}{e x + d}} a c^{2} d^{2} e^{2} \mathrm {sgn}\left (\frac {1}{e x + d}\right ) \mathrm {sgn}\left (e\right )\right )}}{{\left (\frac {c d^{2} e}{e x + d} - \frac {a e^{3}}{e x + d}\right )} e^{3} {\left | e \right |}} + \frac {2 \, {\left (6 \, \sqrt {c d e - \frac {c d^{2} e}{e x + d} + \frac {a e^{3}}{e x + d}} c^{2} d^{3} e^{13} \mathrm {sgn}\left (\frac {1}{e x + d}\right ) \mathrm {sgn}\left (e\right ) - 6 \, \sqrt {c d e - \frac {c d^{2} e}{e x + d} + \frac {a e^{3}}{e x + d}} a c d e^{15} \mathrm {sgn}\left (\frac {1}{e x + d}\right ) \mathrm {sgn}\left (e\right ) + {\left (c d e - \frac {c d^{2} e}{e x + d} + \frac {a e^{3}}{e x + d}\right )}^{\frac {3}{2}} c d^{2} e^{12} \mathrm {sgn}\left (\frac {1}{e x + d}\right ) \mathrm {sgn}\left (e\right ) - {\left (c d e - \frac {c d^{2} e}{e x + d} + \frac {a e^{3}}{e x + d}\right )}^{\frac {3}{2}} a e^{14} \mathrm {sgn}\left (\frac {1}{e x + d}\right ) \mathrm {sgn}\left (e\right )\right )}}{e^{17} {\left | e \right |}}\right )} {\left | e \right |} \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^5,x, algorithm="giac")

[Out]

1/3*(15*(c^3*d^4*sgn(1/(e*x + d))*sgn(e) - a*c^2*d^2*e^2*sgn(1/(e*x + d))*sgn(e))*arctan(sqrt(c*d*e - c*d^2*e/
(e*x + d) + a*e^3/(e*x + d))/sqrt(-c*d*e))/(sqrt(-c*d*e)*e^3*abs(e)) + 3*(sqrt(c*d*e - c*d^2*e/(e*x + d) + a*e
^3/(e*x + d))*c^3*d^4*sgn(1/(e*x + d))*sgn(e) - sqrt(c*d*e - c*d^2*e/(e*x + d) + a*e^3/(e*x + d))*a*c^2*d^2*e^
2*sgn(1/(e*x + d))*sgn(e))/((c*d^2*e/(e*x + d) - a*e^3/(e*x + d))*e^3*abs(e)) + 2*(6*sqrt(c*d*e - c*d^2*e/(e*x
 + d) + a*e^3/(e*x + d))*c^2*d^3*e^13*sgn(1/(e*x + d))*sgn(e) - 6*sqrt(c*d*e - c*d^2*e/(e*x + d) + a*e^3/(e*x
+ d))*a*c*d*e^15*sgn(1/(e*x + d))*sgn(e) + (c*d*e - c*d^2*e/(e*x + d) + a*e^3/(e*x + d))^(3/2)*c*d^2*e^12*sgn(
1/(e*x + d))*sgn(e) - (c*d*e - c*d^2*e/(e*x + d) + a*e^3/(e*x + d))^(3/2)*a*e^14*sgn(1/(e*x + d))*sgn(e))/(e^1
7*abs(e)))*abs(e)

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^5} \, dx=\int \frac {{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{5/2}}{{\left (d+e\,x\right )}^5} \,d x \]

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2)/(d + e*x)^5,x)

[Out]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2)/(d + e*x)^5, x)